Indistinguishability of Linear Compartmental Models

Cash Bortner* and Nicolette Meshkat†

*California State University, Stanislaus cbortner@csustan.edu

†Santa Clara University

Algebraic Systems Biology SIAM Conference on Applied Algebraic Geometry, 2025 University of Wisconsin, Madison, WI 7/10/2025

$$\mathcal{M} = (G, In, Out, Leak)$$

= $(\overrightarrow{P}_3, \{1\}, \{3\}, \{2\}).$

Directed Graph: $G = \overrightarrow{P}_3$

$$\mathcal{M} = (G, In, Out, Leak)$$

= $(\overrightarrow{P}_3, \{1\}, \{3\}, \{2\}).$

Input Compartment: $In = \{1\}$

$$\mathcal{M} = (G, In, Out, Leak)$$

= $(\overrightarrow{P}_3, \{1\}, \{3\}, \{2\}).$

Output Compartment: $Out = \{3\}$

$$\mathcal{M} = (G, In, Out, Leak)$$

= $(\overrightarrow{P}_3, \{1\}, \{3\}, \{2\}).$

Leak Compartment: $Leak = \{2\}$

$$\mathcal{M} = (G, In, Out, Leak)$$

= $(\overrightarrow{P}_3, \{1\}, \{3\}, \{2\}).$

Compartmental Models in the Wild

- SIR Model for spread of a virus in Epidemiology (non-linear)
- SIV Model for vaccine efficiency in Epidemiology
- Modeling Pharmacokinetics for absorption, distribution, metabolism, and excretion in the blood
- Modeling different biological systems

$$\mathcal{M} = (G, In, Out, Leak)$$

= $(\overrightarrow{P}_3, \{1\}, \{3\}, \{2\}).$

Linear Compartmental Model

$$\mathcal{M} = (\textit{G}, \textit{In}, \textit{Out}, \textit{Leak})$$
$$= (\overrightarrow{\textit{P}}_3, \{1\}, \{3\}, \{2\}).$$

ODEs in terms of concentrations $x_i(t)$, input $u_1(t)$, and output $y_3(t)$:

$$\dot{x_1}(t) = -a_{21}x_1(t) + u_1(t)$$

Linear Compartmental Model

$$\mathcal{M} = (\textit{G}, \textit{In}, \textit{Out}, \textit{Leak})$$
$$= (\overrightarrow{P}_3, \{1\}, \{3\}, \{2\}).$$

ODEs in terms of concentrations $x_i(t)$, input $u_1(t)$, and output $y_3(t)$:

$$\dot{x_1}(t) = -a_{21}x_1(t) + u_1(t)
\dot{x_2}(t) = a_{21}x_1(t) - (a_{02} + a_{32})x_2(t)$$

Linear Compartmental Model

$$\mathcal{M} = (\textit{G}, \textit{In}, \textit{Out}, \textit{Leak})$$
$$= (\overrightarrow{\textit{P}}_3, \{1\}, \{3\}, \{2\}).$$

ODEs in terms of concentrations $x_i(t)$, input $u_1(t)$, and output $y_3(t)$:

$$\dot{x_1}(t) = -a_{21}x_1(t) + u_1(t)$$

$$\dot{x_2}(t) = a_{21}x_1(t) - (a_{02} + a_{32})x_2(t)$$

$$\dot{x_3}(t) = a_{32}x_2(t)$$

Linear Compartmental Model

$$\mathcal{M} = (\textit{G}, \textit{In}, \textit{Out}, \textit{Leak})$$
$$= (\overrightarrow{\textit{P}}_3, \{1\}, \{3\}, \{2\}).$$

ODEs in terms of concentrations $x_i(t)$, input $u_1(t)$, and output $y_3(t)$:

$$\dot{x_1}(t) = -a_{21}x_1(t)$$
 $+u_1(t)$
 $\dot{x_2}(t) = a_{21}x_1(t) - (a_{02} + a_{32})x_2(t)$
 $\dot{x_3}(t) = a_{32}x_2(t)$

with

$$y_3(t) = x_3(t)$$
.

Linear Compartmental Model

$$\mathcal{M} = (\textit{G}, \textit{In}, \textit{Out}, \textit{Leak})$$
$$= (\overrightarrow{\textit{P}}_3, \{1\}, \{3\}, \{2\}).$$

ODEs in terms of concentrations $x_i(t)$, input $u_1(t)$, and output $y_3(t)$:

$$\begin{pmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \\ \dot{x}_3(t) \end{pmatrix} = \underbrace{\begin{pmatrix} -a_{21} & 0 & 0 \\ a_{21} & -a_{02} - a_{32} & 0 \\ 0 & a_{32} & 0 \end{pmatrix}}_{a_{32}} \begin{pmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{pmatrix} + \begin{pmatrix} u_1(t) \\ 0 \\ 0 \end{pmatrix}$$

compartmental matrix A

with

$$y_3(t)=x_3(t).$$

Linear Compartmental Model

$$\mathcal{M} = (\textit{G}, \textit{In}, \textit{Out}, \textit{Leak})$$
$$= (\overrightarrow{\textit{P}}_3, \{1\}, \{3\}, \{2\}).$$

Via an application of Cramer's Rule:

$$\det(\partial I - A)y_3 = \det(\partial I - A)^{1,3} u_1$$

Linear Compartmental Model

$$\mathcal{M} = (G, In, Out, Leak)$$

= $(\overrightarrow{P}_3, \{1\}, \{3\}, \{2\}).$

Via an application of Cramer's Rule:

$$\det(\partial I - A)y_3 = \det(\partial I - A)^{1,3} u_1$$

$$y_3^{(3)} + (a_{21} + a_{02} + a_{32})\ddot{y_3} + (a_{02}a_{21} + a_{21}a_{32})\dot{y_3} = (a_{21}a_{32})u_1.$$

an ODE in only the measurable variables and the parameters:

Input/Output Equation

$$\mathcal{M} = (G, In, Out, Leak)$$

= $(\overrightarrow{P}_3, \{1\}, \{3\}, \{2\}).$

$$y_3^{(3)} + (a_{21} + a_{02} + a_{32})\ddot{y}_3 + (a_{02}a_{21} + a_{21}a_{32})\dot{y}_3 = (a_{21}a_{32})u_1.$$

Linear Compartmental Model

$$\mathcal{M} = (G, In, Out, Leak)$$
$$= (\overrightarrow{P}_3, \{1\}, \{3\}, \{2\}).$$

$$y_3^{(3)} + (a_{21} + a_{02} + a_{32})\ddot{y}_3 + (a_{02}a_{21} + a_{21}a_{32})\dot{y}_3 = (a_{21}a_{32})u_1.$$

Theorem (\$, Gross, Meshkat, Shiu, Sullivant [2023])

The coefficients of the input-output equation of a LCM (G, In, Out, Leak) can be generated by *incoming forests* on graphs related to G.

- incoming: no vertex has more than one outgoing edge
- forest: no cycles

Linear Compartmental Model

$$\mathcal{M} = (G, In, Out, Leak)$$
$$= (\overrightarrow{P}_3, \{1\}, \{3\}, \{2\}).$$

$$y_3^{(3)} + (a_{21} + a_{02} + a_{32})\ddot{y_3} + (a_{02}a_{21} + a_{21}a_{32})\dot{y_3} = (a_{21}a_{32})u_1.$$

Theorem (\$, Gross, Meshkat, Shiu, Sullivant [2023])

The coefficients of the input-output equation of a LCM (G, In, Out, Leak) can be generated by *incoming forests* on graphs related to G.

- incoming: no vertex has more than one outgoing edge
- forest: no cycles

Linear Compartmental Model

$$\mathcal{M} = (G, In, Out, Leak)$$

= $(\overrightarrow{P}_3, \{1\}, \{3\}, \{2\}).$

$$y_3^{(3)} + (a_{21} + a_{02} + a_{32})\ddot{y_3} + (a_{02}a_{21} + a_{21}a_{32})\dot{y_3} = (a_{21}a_{32})u_1.$$

Theorem (\$, Gross, Meshkat, Shiu, Sullivant [2023])

The coefficients of the input-output equation of a LCM (G, In, Out, Leak) can be generated by *incoming forests* on graphs related to G.

- incoming: no vertex has more than one outgoing edge
- forest: no cycles

Indistinguishability

Motivating Question

How do we know if the model structure we chose which seems to represent the data well is **unique**?

Indistinguishability

Motivating Question

How do we know if the model structure we chose which seems to represent the data well is **unique**?

Definition

Two LCMs are *indistinguishable* if for any choice of parameters in the first model, there is a choice of parameters in the second model that will yield the same *dynamics* in both models.

Indistinguishability

Motivating Question

How do we know if the model structure we chose which seems to represent the data well is **unique**?

Definition

Two LCMs are *indistinguishable* if for any choice of parameters in the first model, there is a choice of parameters in the second model that will yield the same *dynamics* in both models.

What does "same dynamics" mean?

$$\begin{split} \mathcal{M}: y_3^{(3)} + \big(a_{21} + a_{02} + a_{32}\big)\ddot{y_3} + \big(a_{02}a_{21} + a_{21}a_{32}\big)\dot{y_3} &= \big(a_{21}a_{32}\big)u_1. \\ \mathcal{M}': y_3^{(3)} + \big(a_{21} + a_{23} + a_{32}\big)\ddot{y_3} + \big(a_{23}a_{21} + a_{21}a_{32}\big)\dot{y_3} &= \big(a_{21}a_{32}\big)u_1. \end{split}$$

Remark

From the perspective of the input-output equations, we can not *distinguish* between these two very structurally different models.

$$\mathcal{M}: y_3^{(3)} + (a_{21} + a_{02} + a_{32})\ddot{y_3} + (a_{02}a_{21} + a_{21}a_{32})\dot{y_3} = (a_{21}a_{32})u_1.$$

$$\mathcal{M}': y_3^{(3)} + (a_{21} + a_{23} + a_{32})\ddot{y_3} + (a_{23}a_{21} + a_{21}a_{32})\dot{y_3} = (a_{21}a_{32})u_1.$$

Working Definition

Two models are *permutation indistinguishable* if they have the same input-output equations up to renaming the parameters.

$$\mathcal{M}: y_3^{(3)} + (a_{21} + a_{02} + a_{32})\ddot{y_3} + (a_{02}a_{21} + a_{21}a_{32})\dot{y_3} = (a_{21}a_{32})u_1.$$

$$\mathcal{M}': y_3^{(3)} + (a_{21} + a_{23} + a_{32})\ddot{y_3} + (a_{23}a_{21} + a_{21}a_{32})\dot{y_3} = (a_{21}a_{32})u_1.$$

renaming:
$$\begin{pmatrix} a_{21} \\ a_{02} \\ a_{32} \end{pmatrix} \mapsto \begin{pmatrix} a_{21} \\ a_{23} \\ a_{32} \end{pmatrix}$$

$$\mathcal{M}: y_3^{(3)} + (a_{21} + a_{02} + a_{32})\ddot{y_3} + (a_{02}a_{21} + a_{21}a_{32})\dot{y_3} = (a_{21}a_{32})u_1.$$

$$\mathcal{M}': y_3^{(3)} + (a_{21} + a_{23} + a_{32})\ddot{y_3} + (a_{23}a_{21} + a_{21}a_{32})\dot{y_3} = (a_{21}a_{32})u_1.$$

Remark

Permuation indistinguishability is an equivalence relation!

$$\mathcal{M}: y_3^{(3)} + (a_{21} + a_{02} + a_{32})\ddot{y_3} + (a_{02}a_{21} + a_{21}a_{32})\dot{y_3} = (a_{21}a_{32})u_1.$$

$$\mathcal{M}': y_3^{(3)} + (a_{21} + a_{23} + a_{32})\ddot{y_3} + (a_{23}a_{21} + a_{21}a_{32})\dot{y_3} = (a_{21}a_{32})u_1.$$

Remark

Permuation indistinguishability is an equivalence relation!

Question: What is the equivalence class of a model?

$$\mathcal{M}: y_3^{(3)} + (a_{21} + a_{02} + a_{32})\ddot{y_3} + (a_{02}a_{21} + a_{21}a_{32})\dot{y_3} = (a_{21}a_{32})u_1.$$

$$\mathcal{M}': y_3^{(3)} + (a_{21} + a_{23} + a_{32})\ddot{y_3} + (a_{23}a_{21} + a_{21}a_{32})\dot{y_3} = (a_{21}a_{32})u_1.$$

Remark

Permuation indistinguishability is an equivalence relation!

Question: What is the equivalence class of a model? (Size 1?)

Theorem (Godfrey & Chapman [1990])

Two indistinguishable models must preserve the following:

- 1. The length of the shortest path from the input to the output
- 2. The number of compartments with a path to any output compartment
- 3. The number of compartments that can be reached from an input
- 4. The number of traps*

Example

Theorem (Godfrey & Chapman [1990])

Two indistinguishable models must preserve the following:

- 1. The length of the shortest path from the input to the output
- 2. The number of compartments with a path to any output compartment
- 3. The number of compartments that can be reached from an input
- 4. The number of traps*

Example (1. Dist(1,3) = 2 in both!)

Theorem (Godfrey & Chapman [1990])

Two indistinguishable models must preserve the following:

- 1. The length of the shortest path from the input to the output
- 2. The number of compartments with a path to any output compartment
- 3. The number of compartments that can be reached from an input
- 4. The number of traps*

Example (2. **Two** compartments with a path to the output!)

Theorem (Godfrey & Chapman [1990])

Two indistinguishable models must preserve the following:

- 1. The length of the shortest path from the input to the output
- 2. The number of compartments with a path to any output compartment
- 3. The number of compartments that can be reached from an input
- 4. The number of traps*

Example (3. **Two** compartments with a path from the input!)

Theorem (Godfrey & Chapman [1990])

Two indistinguishable models must preserve the following:

- 1. The length of the shortest path from the input to the output
- 2. The number of compartments with a path to any output compartment
- 3. The number of compartments that can be reached from an input
- 4. The number of traps*

Example (4. Each model has **one** trap!)

Theorem (Godfrey & Chapman [1990])

Two indistinguishable models must preserve the following:

- 1. The length of the shortest path from the input to the output
- 2. The number of compartments with a path to any output compartment
- 3. The number of compartments that can be reached from an input
- 4. The number of traps*

Goal:

Find *sufficient* conditions for permutation indistinguishability of two models based on their graph structures.

Skeletal Path Models

Definition

A *skeletal path model* is an LCM whose graph contains the directed path $\overrightarrow{P_n}$, i.e $1 \rightarrow 2 \rightarrow \ldots \rightarrow n$, with $In = \{1\}$ and $Out = \{n\}$.

Example

Skeletal Path Moves: Walking the Leak

Question

What *moves* can you perform on a basic skeletal path model resulting in an indistinguishable model?

Skeletal Path Moves: Walking the Leak

Question

What *moves* can you perform on a basic skeletal path model resulting in an indistinguishable model?

Theorem (\$ & Meshkat [2024]; \$, Gilliana, Patel, & Tamras [2025*])

The following skeletal path models are indistinguishable:

- $\mathcal{M}_i = (\overrightarrow{P_n}, \{1\}, \{n\}, \{i\})$ for any $i \in \{1, 2, 3, \dots, n-1\}$
- $\mathcal{M}' = (\overrightarrow{P_n} \cup \{n \rightarrow n-1\}, \{1\}, \{n\}, \emptyset).$

Example

Proof idea

Theorem (\$ & Meshkat [2024]; \$, Gilliana, Patel, & Tamras [2025*])

The following skeletal path models are indistinguishable:

- $\mathcal{M}_i = (\overrightarrow{P_n}, \{1\}, \{n\}, \{i\})$ for any $i \in \{1, 2, 3, \dots, n-1\}$
- $\mathcal{M}' = (\overrightarrow{P_n} \cup \{n \to n-1\}, \{1\}, \{n\}, \emptyset).$

Proof idea 1: Left-hand side of the input/output equation of \mathcal{M}_i given by:

$$\det(\partial I - A_i)y_n = \det\begin{pmatrix} \partial + a_{21} & 0 & \cdots & \cdots & 0 & 0 \\ -a_{21} & \ddots & \ddots & \ddots & \ddots & \vdots & \vdots \\ 0 & \ddots & \partial + a_{0i} + a_{i(i-1)} & \ddots & \vdots & \vdots & \vdots \\ \vdots & \ddots & -a_{i(i-1)} & \ddots & 0 & 0 \\ 0 & \cdots & \ddots & \ddots & \partial + a_{n(n-1)} & 0 \\ 0 & \cdots & \cdots & 0 & -a_{n(n-1)} & \partial \end{pmatrix} y_n$$

Proof idea

Theorem (\$ & Meshkat [2024]; \$, Gilliana, Patel, & Tamras [2025*])

The following skeletal path models are indistinguishable:

- $\mathcal{M}_i = (\overrightarrow{P_n}, \{1\}, \{n\}, \{i\})$ for any $i \in \{1, 2, 3, \dots, n-1\}$
- $\mathcal{M}' = (\overrightarrow{P_n} \cup \{n \rightarrow n-1\}, \{1\}, \{n\}, \emptyset).$

Proof idea 2:

• Under a renaming of the parameters, the incoming forests of each \mathcal{M}_i are exactly the same as the incoming forests of each \mathcal{M}_j (and \mathcal{M}').

Proof idea

Theorem (\$ & Meshkat [2024]; \$, Gilliana, Patel, & Tamras [2025*])

The following skeletal path models are indistinguishable:

- $\mathcal{M}_i = (\overrightarrow{P_n}, \{1\}, \{n\}, \{i\})$ for any $i \in \{1, 2, 3, \dots, n-1\}$
- $\mathcal{M}' = (\overrightarrow{P_n} \cup \{n \rightarrow n-1\}, \{1\}, \{n\}, \emptyset).$

Proof idea 2:

- Under a renaming of the parameters, the incoming forests of each \mathcal{M}_i are exactly the same as the incoming forests of each \mathcal{M}_j (and \mathcal{M}').
- Thus, each of the coefficients of the respective input/output equations are indistinguishable.

Detour Models

Definition

A detour model is given by

$$\mathcal{M} = (\overrightarrow{P_n} \cup \overrightarrow{D_{i,j}}, \{1\}, \{n\}, Leak)$$

where D is some connected directed graph, and $D_{i,j}^*$ includes one edge from node i and to node j in the skeletal path.

Example

Detour Models

Theorem (\$ & Meshkat [2024])

The following two detour models are indistinguishable:

- $\mathcal{M} = (\overrightarrow{P_n} \cup \overrightarrow{D_{i,j}}, \{1\}, \{n\}, Leak)$
- $\mathcal{M}' = (\overrightarrow{P_n} \cup \overrightarrow{D_{i+1,j+1}}, \{1\}, \{n\}, Leak)$

Proof idea:

 Break the A matrices into blocks, and show equivalent determinants under Φ

Detour Models

Theorem (\$ & Meshkat [2024])

The following two detour models are indistinguishable:

- $\mathcal{M} = (\overrightarrow{P_n} \cup \overrightarrow{D_{i,j}}, \{1\}, \{n\}, Leak)$
- $\mathcal{M}' = (\overrightarrow{P_n} \cup \overrightarrow{D_{i+1,i+1}}, \{1\}, \{n\}, Leak)$

Proof idea:

- Break the A matrices into blocks, and show equivalent determinants under Φ
- Or, the incoming forests under the renaming are the same, so the coefficients are the same!

Source and Sink Models

Corollary (\$ & Meshkat [2024]

We can extend results from detour models to source and sink models.

Example

Basic Source Model

Basic Sink Model

Future Work

- These are very specific families of LCMs, but this is a proof of concept moving forward!
- More implementation of graph theory in showing sufficient conditions for other families of models
 - Cycle Models (undergraduate research project)
 - Tree Models
- Look into more general indistinguishability from a graph perspective
- Help biologists determine if the model they are using is the only model which yield the same dynamics

References

Cashous Bortner, John Gilliana, Dev Patel, and Zaia Tamras.

Graph theoretic proofs of linear compartmental model indistinguishability.

Preprint available at https://arxiv.org/abs/2412.01135, 2025.

Cashous Bortner, Elizabeth Gross, Nicolette Meshkat, Anne Shiu, and Seth Sullivant.

Identifiability of linear compartmental tree models and a general formula for the input-output equations.

Advances in Applied Mathematics, 146, May 2023.

Cashous Bortner and Nicolette Meshkat.

Graph-based sufficient conditions for the indistinguishability of linear compartmental models.

SIAM Journal on Applied Dynamical Systems, 23(3):2179-2207, 2024.

Keith R. Godfrey and Michael J. Chapman.

Identifiability and indistinguishability of linear compartmental models. *Mathematics and Computers in Simulation*, 32:273–295, 1990.

Thank you!!!

Partial undergraduate support from the Louis Stokes Alliance for Minority Participation (LSAMP).

This Presentation!

